Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Khẳng định nào sau đây đúng?
Tập giá trị của hàm số y=sin2x là
Tập hợp tất cả các giá trị của tham số m để phương trình cos2x=m vô nghiệm là
Nghiệm của phương trình cot32x=3 là
Cho cấp số cộng (un) với u1=3 và u3=7. Công sai của cấp số cộng đã cho bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Hàm số nào dưới đây là hàm số chẵn?
Giá trị lớn nhất của hàm số y=3sinx là
Phát biểu nào sau đây sai về hàm số y=cos(x−2π)?
Số vị trí biểu diễn các nghiệm của phương trình cot2x−2cotx+1=0 trên đường tròn lượng giác là
Cho cấp số nhân (un) biết u2=−2 và u5=54. Tổng 10 số hạng đầu tiên của cấp số nhân là
Xét hàm số y=cosx trên khoảng (5π;34π). Hàm số đồng biến trên khoảng có độ dài là
Cho góc lượng giác x, sao cho tanx=31 với π<x<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosx<0. |
|
b) cosx=−1010. |
|
c) sinx=−1010. |
|
d) sinx+cosx=−510. |
|
Một vật dao động xung quanh vị trí cân bằng theo phương trình x=1,5cos(4tπ); trong đó t là thời gian được tính bằng giây và quãng đường h=∣x∣ được tính bằng mét là khoảng cách theo phương ngang của vật đối với vị trí cân bằng.
a) Vật ở xa vị trí cân bằng nhất nghĩa là h=1,5 m. |
|
b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất. |
|
c) Khi vật ở vị trí cân bằng thì cos(4tπ)=0. |
|
d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần. |
|
Một sinh viên sau khi ra trường và xin vào làm cho một trung tâm với mức lương khởi điểm là 100 triệu đồng một năm. Cứ sau mỗi năm, trung tâm trả thêm cho sinh viên 20 triệu đồng. Gọi un (triệu đồng) là số tiền lương mà sinh viên đó nhận được ở năm thứ n.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số tiền lương sinh viên đó nhận được ở năm thứ hai là 120 triệu đồng. |
|
b) Số tiền lương sinh viên đó nhận được ở năm thứ 10 là 300 triệu đồng. |
|
c) Dãy số (un) là cấp số cộng có u1=120 và công sai d=20. |
|
d) Giả sử, mỗi năm bạn sinh viên chi tiêu tiết kiệm hết 70 triệu đồng. Vậy sau ít nhất 12 năm thì sinh viên đó tiết kiệm được đủ tiền mua căn chung cư 2 tỉ đồng. |
|
Cho góc x thỏa mãn sinx=−53 và π<x<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosx>0. |
|
b) cosx=−54. |
|
c) tanx=43. |
|
d) cotx=34. |
|
Từ một vị trí A, người ta buộc hai sợi cáp AB và AC đến một cái trụ cao 15 m, được dựng vuông góc với mặt đất, chân trụ ở vị trí D. Biết CD=9 m và AD=12 m. Tìm góc nhọn α=BAC tạo bởi hai sợi dây cáp đó, đồng thời tính gần đúng α (làm tròn đến hàng phần mười, đơn vị độ).
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Vào đầu mỗi tháng, ông An đều gửi vào ngân hàng số tiền cố định 30 triệu đồng theo hình thức lãi kép với lãi suất 0,6% /tháng. Tính số tiền (đơn vị triệu đồng) ông An có được sau tháng sau tháng thứ hai. (làm tròn kết quả tới hàng phần mười)
Trả lời:
Ông Sơn trồng cây trên một mảnh đất hình tam giác theo quy luật: ở hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây, hàng thứ ba có 3 cây…, ở hàng thứ n có n cây. Biết rằng ông đã trồng hết 11325 cây. Số hàng cây được trồng theo cách trên là bao nhiêu?
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Cho dãy số (un) biết un=n+2an+5. Có bao nhiêu giá trị nguyên của a nhỏ hơn 100 để dãy số (un) là dãy số tăng.
Trả lời: