Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho mệnh đề chứa biến P(x): "x+10≥x2 với x là số tự nhiên". Mệnh đề nào sau đây sai?
Mệnh đề phủ định của mệnh đề P: "2≤2" là
Cho A, B, C là ba tập hợp được minh họa bằng sơ đồ Ven như hình vẽ:
Phần gạch sọc trong hình vẽ trên là tập hợp nào sau đây?
Cặp số nào sau đây là nghiệm của bất phương trình −x+3y−2>0?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Trên nửa đường tròn đơn vị, cho góc α như hình vẽ:
Các giá trị lượng giác của góc α là
Công thức nào sau đây đúng?
Cho tam giác ABC có AB=3, BC=5 và độ dài đường trung tuyến BM=13.
Độ dài AC bằng
Cho hai tập hợp A={x∈R(2x−x2)(x−1)=0}, B={n∈N0<n2<10}. Mệnh đề nào sau đây đúng?
Miền hình phẳng (H) được giới hạn bởi ⎩⎨⎧y≥0x+y≤3y≤x+1 là phần tô màu ở hình nào dưới đây?




Cho tanα−cotα=3. Giá trị của biểu thức A=tan2α+cot2α là
Cho góc α thỏa mãn cosα=31. Giá trị của biểu thức P=sinα+cosα1 bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Theo tiêu chuẩn của Uỷ ban tăng cường sức khỏe HPB, lượng đường dung nạp thêm mỗi ngày không nên vượt quá 50 g. Biết một kilogam bánh quy chứa trung bình 150 g đường, một ly trà sữa chứa trung bình 55 g đường. Gọi x, y tương ứng là khối lượng bánh quy và số ly trà sữa tiêu thụ trong một tuần của một người.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) x≥0, y≥0. |
|
b) Lượng đường dung nạp từ số lượng bánh quy và trà sữa trên là: F(x;y)=150x+55y. |
|
c) Để đảm bảo sức khỏe theo tiêu chuẩn, ta cần điều kiện 150x+55y≤50 |
|
d) Một người ăn uống trong một tuần 0,4 kilogam bánh quy và 5 ly trà sữa thì không vượt qua ngưỡng tiêu thụ đường tiêu chuẩn. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=31 với 90∘<α<180∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0. |
|
b) cosα=−322. |
|
c) tanα=−221. |
|
d) cotα=22. |
|
Trong đợt quyên góp ủng hộ đồng bào miền Bắc bị lũ lụt năm 2024, có 25 học sinh lớp 2A đã tham gia ủng hộ, mỗi học sinh ủng hộ nhiều nhất hai tờ tiền khác nhau trong ba loại tờ tiền mệnh giá 5 000 đồng, 10 000 đồng và 20 000 đồng. Biết rằng số học sinh đã tham gia ủng hộ thỏa mãn đồng thời ba kết quả sau:
(1) Số học sinh chỉ ủng hộ một tờ 5 000 đồng bằng tổng số học sinh chỉ ủng hộ một tờ 10 000 đồng và số học sinh chỉ ủng hộ một tờ 20 000 đồng.
(2) Trong số học sinh không ủng hộ tờ 5 000 đồng thì số học sinh có ủng hộ tờ 10 000 đồng nhiều gấp hai lần số học sinh có ủng hộ tờ 20 000 đồng.
(3) Số học sinh chỉ ủng hộ một tờ 5 000 đồng nhiều hơn số học sinh ủng hộ tờ 5 000 đồng và một tờ khác là 1 học sinh.
Có bao nhiêu học sinh lớp 2A chỉ ủng hộ một tờ 10 000 đồng?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Một nhà máy sản xuất hai sản phẩm A và B. Biết để sản xuất ra một kg sản phẩm A cần 5 kg nguyên liệu I và 4 kg nguyên liệu II; để sản xuất hai kg sản phẩm B cần 4 kg nguyên liệu I và 4 kg nguyên liệu II. Biết giá của mỗi kg nguyên liệu I là 1 triệu đồng, giá của mỗi kg nguyên liệu II là 2 triệu đồng. Giá bán của 1 kg sản phẩm A là 18 triệu đồng và giá 1 kg sản phẩm B là 8,25 triệu đồng. Biết chi phí vận chuyển là 20 triệu đồng và nhà máy hiện chỉ có 175 kg nguyên liệu I; 150 kg nguyên liệu II. Nhà máy phải sản xuất bao nhiêu sản phẩm A để thu được lợi nhuận lớn nhất?
Trả lời:
Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD=60 m, giả sử chiều cao của giác kế là OC=1 m. Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc AOB=60∘.
Tính chiều cao của ngọn tháp. (làm tròn kết quả đến hàng đơn vị của mét)
Trả lời:
Cho tam giác nhọn ABC có a=3,b=4 và diện tích S=33. Bán kính R của đường tròn ngoại tiếp tam giác có dạng R=nm, với m,n∈N,b<5. Tính giá trị của biểu thức T=m+n.
Trả lời:
Cho biểu thức T=3x−2y−4 với x và y thỏa mãn hệ bất phương trình: ⎩⎨⎧x−y−1≤0x+4y+9≥0x−2y+3≥0. Biết T đạt giá trị nhỏ nhất khi x=x0 và y=y0. Tính x02+y02.
Trả lời: