(3 -x)/2009 - (2-x)/2010 + (1-x)/2011= -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)(1)
=>\(CA^2=CH\cdot CB\)
b: Xét ΔBAC có BK là phân giác
nên \(\dfrac{AK}{BK}=\dfrac{CA}{CB}\left(2\right)\)
Xét ΔCAH có CI là phân giác
nên \(\dfrac{IH}{IA}=\dfrac{CH}{CA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{AK}{BK}=\dfrac{IH}{IA}\)

\(\left(x+0,35x\right)^4=114752300\)
=>\(\left[{}\begin{matrix}1,35x=103,5\\1,35x=-103,5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=100\\x=-100\end{matrix}\right.\)

Gọi x (tuổi) là tuổi em hiện nay (x > 0)
Tuổi anh hiện nay là: 4x (tuổi)
Tuổi em 7 năm sau: x + 7 (tuổi)
Tuổi anh 7 năm sau: 4x + 7 (tuổi)
Theo đề bài, ta có phương trình:
4x + 7 = 3(x + 7)
4x + 7 = 3x + 21
4x - 3x = 21 - 7
x = 14 (nhận)
Vậy tuổi em hiện nay là 14 tuổi, tuổi anh hiện nay là 4.14 = 56 tuổi.
(Chú ý: Em xem lại số liệu chứ tuổi em là 14 mà sao tuổi anh tới 56 tuổi là không hợp lý)

\(\Omega=\left\{1;2;3;...;30\right\}\)
=>\(n\left(\Omega\right)=30-1+1=30\)
Gọi A là biến cố "Số xuất hiện trên thẻ được rút ra là số chia hết cho 2 và 5"
=>A={10;20;30}
=>n(A)=3
\(P_A=\dfrac{3}{30}=\dfrac{1}{10}\)

Lơ giải:
Giả sử quyển thứ hai tăng $a$ % so với giá ban đầu thì quyển thứ nhất tăng $a+5$ % so với giá ban đầu.
Theo bài ra ta có:
$30(1+\frac{a+5}{100})+65(1+\frac{a}{100})=106$
$\Rightarrow 0,95a+96,5=106$
$\Rightarrow a=10$ (%)
Vậy quyển 1 tăng 15% và quyển 2 tăng 10%

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH~ΔCBA
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
ΔABH~ΔCBA
=>\(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9,6\left(cm\right)\)
c: Xét ΔBAC có BK là phân giác
nên \(\dfrac{AK}{KC}=\dfrac{BA}{BC}\left(1\right)\)
=>\(\dfrac{AK}{BA}=\dfrac{KC}{BC}\)
=>\(\dfrac{AK}{12}=\dfrac{KC}{20}\)
=>\(\dfrac{AK}{3}=\dfrac{KC}{5}\)
mà AK+KC=AC=16cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AK}{3}=\dfrac{KC}{5}=\dfrac{AK+KC}{3+5}=\dfrac{16}{8}=2\)
=>\(AK=2\cdot3=6\left(cm\right)\)
d: Xét ΔBAK vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABK}=\widehat{HBI}\)
Do đó: ΔBAK~ΔBHI
=>\(\widehat{BKA}=\widehat{BIH}\)
=>\(\widehat{AIK}=\widehat{AKI}\)
=>ΔAKI cân tại A

\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
=>\(\left(\dfrac{x-1}{13}-1\right)-\left(\dfrac{2x-13}{15}-1\right)=\left(\dfrac{3x-15}{27}-1\right)-\left(\dfrac{4x-27}{29}-1\right)\)
=>\(\dfrac{x-14}{13}-\dfrac{2x-28}{15}-\dfrac{3x-42}{27}+\dfrac{4x-56}{29}=0\)
=>\(\left(x-14\right)\left(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}+\dfrac{4}{29}\right)=0\)
=>x-14=0
=>x=14

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó; ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)
c: Xét ΔHFE và ΔHBC có
\(\dfrac{HF}{HB}=\dfrac{HE}{HC}\)
\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó; ΔHFE~ΔHBC
\(\dfrac{3-x}{2009}-\dfrac{2-x}{2010}+\dfrac{1-x}{2011}=-1\)
=>\(\dfrac{x-3}{2009}+\dfrac{x-2}{2010}-\dfrac{x-1}{2011}=1\)
=>\(\left(\dfrac{x-3}{2009}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-1}{2011}-1\right)=0\)
=>\(\dfrac{x-2012}{2009}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2011}=0\)
=>\(\left(x-2012\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}-\dfrac{1}{2011}\right)=0\)
=>x-2012=0
=>x=2012