242-25+(2x+5)2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

`(x^2 - 4sqrt{3}x + 12)/(x - 2sqrt{3}) (x ne 2sqrt{3})`
`= (x^2 - 2x . 2sqrt{3} + (2sqrt{3})^2)/(x - 2sqrt{3}) `
`= ( (x -2 sqrt{3} )^2)/(x - 2sqrt{3}) `
`= x - 2sqrt{3}`

`(xsqrt{x} - 1)/(x + sqrt{x} + 1) ` với `x > 0; x ne 1`
`= ((sqrt{x})^3 - 1^3)/(x + sqrt{x} + 1)`
`= ((sqrt{x} -1)(x + sqrt{x} + 1))/(x + sqrt{x} + 1)`
`= sqrt{x} -1`

A B C D E F M N K
Xét tg AEF có
AE=AF (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn...)
=> tg AEF cân tại A \(\Rightarrow\widehat{AEF}=\widehat{AFE}\) (góc ở đáy tg cân)
Ta có
\(\widehat{AEF}=\widehat{MEB}\) (góc đối đỉnh)
\(\widehat{AFE}=\widehat{KFC}\) (góc đối đỉnh)
\(\Rightarrow\widehat{MEB}=\widehat{KFC}\)
Xét tg vuông MEB và tg vuông KFC có
\(\widehat{MEB}=\widehat{KFC}\left(cmt\right)\)
=> tg MEB đồng dạng với tg KFC (g.g.g)

\(B=\dfrac{\sqrt{x}-1}{3-\sqrt{x}}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1-\sqrt{x}}{\sqrt{x}-3}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-9\sqrt{x}-5-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1-x-9\sqrt{x}-5-x+3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2x-6\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{-2\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2\left(\sqrt{x}+2\right)}{\sqrt{x}-3}\)

Gọi số km di chuyển được là x
\(\Rightarrow17+15.x\le300\)
\(\Rightarrow x\le18,9\left(km\right)\)
Vậy hành khách di chuyển được tối đa 18,9km
Gọi \(x>0\left(km\right)\) là số km tiếp theo
Theo đề bài ta có :
\(17000+15000x=300000\)
\(\Leftrightarrow15000x=283000\)
\(\Leftrightarrow x=\dfrac{283000}{15000}\approx19\left(km\right)\)
Vậy với \(300000\) thì hành khách có thể đi tối đa \(19\left(km\right)\)

Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
`24^2 - 25 + (2x + 5)^2 = 0`
Ta có: `24^2 > 25`
`=> 24^2 - 25 > 0`
Và `(2x + 5)^2 >= 0 ∀x `
`=> 24^2 - 25 + (2x + 5)^2 > 0`
Vậy phương trình đã cho vô nghiệm