Tìm tất cả các số nguyên tố p,q thoả mãn 7p+q và pq+11 cũng là số nguyên tố
Bạn có nào trả lời nhanh và đúng mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E ơi đăng nhiều quá một lần khó nhận trợ giúp nha e, mình chia nhỏ bài ra nè
Bài 7:
a: \(5\cdot2^2+\left(x+3\right)=5^2\)
=>20+x+3=25
=>x+23=25
=>x=2
b: \(2^3+\left(x-3^2\right)=5^3-4^3\)
=>\(8+x-9=125-64=61\)
=>x=61+1=62
c:
\(4\left(x-5\right)-2^3=2^4\cdot3\)
=>\(4\left(x-5\right)=16\cdot3+8=8+48=56\)
=>x-5=14
=>x=19
d: \(5\left(x+7\right)-10=2^3\cdot5\)
=>5(x+7)-10=40
=>5(x+7)=50
=>x+7=10
=>x=3
Bài 3:
a: \(2^x+2^{x+3}=144\)
=>\(2^x+8\cdot2^x=144\)
=>\(9\cdot2^x=144\)
=>\(2^x=16\)
=>x=4
b: \(\left(x-5\right)^{2022}=\left(x-5\right)^{2021}\)
=>\(\left(x-5\right)^{2022}-\left(x-5\right)^{2021}=0\)
=>\(\left(x-5\right)^{2021}\left(x-5-1\right)=0\)
=>\(\left(x-5\right)^{2021}\cdot\left(x-6\right)=0\)
=>\(\left[{}\begin{matrix}x-5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
c: \(\left(2x+1\right)^3=9\cdot81\)
=>\(\left(2x+1\right)^3=9^3\)
=>2x+1=9
=>2x=8
=>x=4
x(x+8)=20
=>\(x^2+8x-20=0\)
=>(x+10)(x-2)=0
=>\(\left[{}\begin{matrix}x=-10\\x=2\end{matrix}\right.\)
\(x\)(\(x+8\)) = 20
\(x^2\) + 8\(x\) = 20
\(x^2\) + 8\(x\) - 20 = 0
(\(x^2\) + 10\(x\)) - (2\(x\) + 10) = 0
\(x\)(\(x+10\)) - 2(\(x+10\)) = 0
(\(x+10\))(\(x-2\)) = 0
\(\left[{}\begin{matrix}x+10=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-10\\x=2\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-10; 2}
Bài giải
Số sách của thư viện sau 1 năm là :
(1000*20:100)+1000 = 1200 ( sách )
Số sách của thư viện sau 2 năm là :
(1200*20:100)+1200 = 1440 ( sách )
Đáp số : 1440 sách
( DẤU * LÀ DẤU NHÂN NHA :0 )
bài này cũng dễ ấy mà =)
a: \(5\cdot5^2\cdot5^4\cdot5^8=5^{1+2+4+8}=5^{15}\)
b: \(2^3\cdot2^4\cdot2^5:2^6=2^{3+4+5-6}=2^6\)
c: \(x^2\cdot x^3:x^4\cdot x^7=x^{2+3-4+7}=x^8\)
d: \(\left(7^3:7^2\right)\cdot\left(7^2\cdot7^4\right):\left(7^2\cdot7\right)\)
\(=7\cdot7^6:7^3\)
\(=7^7:7^3=7^4\)
a: \(x^3=64\)
=>\(x^3=4^3\)
=>x=4
b: \(x^2=2^3+3^2+4^3\)
=>\(x^2=8+9+64=64+17=81\)
mà x>0
nên \(x=\sqrt{81}=9\)
c: \(3x^2+123=231\)
=>\(3x^2=231-123=108\)
=>\(x^2=36\)
mà x>0
nên x=6
d: \(145-2x^2=136:8\)
=>\(145-2x^2=17\)
=>\(2x^2=128\)
=>\(x^2=64\)
mà x>0
nên x=8
1: \(3^{x+2}+3^x=10\)
=>\(9\cdot3^x+3^x=10\)
=>\(10\cdot3^x=10\)
=>\(3^x=1\)
=>x=0
2: \(2^{x+1}-2^x=32\)
=>\(2^x\cdot2-2^x=32\)
=>\(2^x=32=2^5\)
=>x=5
3: \(4^{x+2}-4^x=60\)
=>\(4^x\cdot16-4^x=60\)
=>\(15\cdot4^x=15\cdot4\)
=>\(4^x=4\)
=>x=1
4: \(2^{x+2}-2^x=96\)
=>\(4\cdot2^x-2^x=96\)
=>\(3\cdot2^x=3\cdot32\)
=>\(2^x=32\)
=>x=5
5: \(2^{x+3}+2^x=144\)
=>\(2^x\cdot8+2^x=144\)
=>\(9\cdot2^x=9\cdot16\)
=>\(2^x=16\)
=>x=4
6: \(3^{x+3}-3^x=234\)
=>\(3^x\cdot27-3^x=234\)
=>\(26\cdot3^x=234\)
=>\(3^x=9=3^2\)
=>x=2
7:
\(5^x+5^{x+1}=750\)
=>\(5^x+5\cdot5^x=750\)
=>\(6\cdot5^x=750\)
=>\(5^x=125=5^3\)
=>x=3
8: \(2^x+2^{x+2}=320\)
=>\(2^x+2^x\cdot4=320\)
=>\(5\cdot2^x=320\)
=>\(2^x=64=2^6\)
=>x=6
9: \(5^x+5^{x+2}=650\)
=>\(5^x+5^x\cdot25=650\)
=>\(26\cdot5^x=650\)
=>\(5^x=\dfrac{650}{26}=25=5^2\)
=>x=2
\(\Leftrightarrow\left[{}\begin{matrix}3x-21=0\\43-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=43\end{matrix}\right.\)
Vậy x = 7 hoặc x = 43
\(\left(3x-21\right)\cdot\left(43-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-21=0\\43-x=0\end{matrix}\right.\\\Rightarrow\left[{}\begin{matrix}x=7\\x=43\end{matrix}\right. \)
Vậy: \(x=7;x=43\)
Số lượng số hạng:
(100 - 1) : 3 + 1 = 34 (số hạng)
`(x+1)+(x+4)+...+(x+100)`
`=x+1+x+4+...+x+100`
`=(x+x+...+x)+(1+4+...+100)`
`=34*x+(100+1)*34/2`
`=34*x+1717`
Nếu p;q đều lẻ \(\Rightarrow7p\) lẻ nên \(7p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (không thỏa mãn)
\(\Rightarrow\) Trong số p; q phải có ít nhất 1 số chẵn
TH1: p chẵn \(\Rightarrow p=2\)
- Với \(q=3\Rightarrow7p+q=7.2+3=17\) là SNT và \(pq+11=2.3+11=17\) là SNT (thỏa mãn)
- Với \(q\ne3\Rightarrow q\) ko chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)
+ Nếu \(q=3k+1\Rightarrow7p+q=14+3k+1=3\left(k+5\right)\) chia hết cho 3 => là hợp số (ktm)
+ Nếu \(q=3k+2\Rightarrow pq+11=2\left(3k+2\right)+11=3\left(2k+5\right)\) chia hết cho 3 => là hợp số (ktm)
TH2: q chẵn \(\Rightarrow q=2\)
- Với \(p=3\) thỏa mãn (em tự kiểm tra)
- Với \(p\ne3\Rightarrow p\) ko chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)
+ Nếu \(p=3k+1\Rightarrow7p+q=7\left(3k+1\right)+2=3\left(7k+3\right)\) chia hết cho 3=> là hợp số (ktm)
+ Nếu \(p=3k+2\Rightarrow pq+11=2\left(3k+2\right)+11=3\left(2k+5\right)\) chia hết cho 3 => là hợp số (ktm)
Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)