\(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x-9}{9-x}\right):\left(\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2022

a:

Sửa đề: \(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

 \(C=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}\)

\(=-\dfrac{3\sqrt{x}}{2\sqrt{x}+4}\)

b: Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

25 tháng 4 2017

a)C=\(\dfrac{9}{\sqrt{x}+3}\)

b)\(x>36\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Ôn tập Căn bậc hai. Căn bậc ba

a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)

b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)

Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay 0<x<9

a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(=\dfrac{-6}{\sqrt{x}+3}\)

b: Để A<-1/2 thì A+1/2<0

\(\Leftrightarrow-\dfrac{6}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)

\(\Leftrightarrow-12+\sqrt{x}+3< 0\)

=>0<x<81 và x<>9

a)

\(B=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{2\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\\ B=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-3\sqrt{x}}\\ B=\dfrac{\left[\sqrt{x}\left(3-\sqrt{x}\right)\right].\left[\sqrt{x}\left(3-\sqrt{x}+x+9\right)\right]}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\\ B=\dfrac{2.\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}=2\dfrac{\sqrt{x}+2}{3+\sqrt{x}}\)

b)

\(B< 1\Leftrightarrow2\dfrac{\sqrt{x}+2}{3+\sqrt{x}}< 1\\ \Leftrightarrow\dfrac{\sqrt{x}+2}{3+\sqrt{x}}< 1\\ \dfrac{\sqrt{x}+2}{3+\sqrt{x}}-1< 0\\ \dfrac{\sqrt{x}+2-3-\sqrt{x}}{3+\sqrt{x}}< 0\\ \dfrac{-1}{3+\sqrt{x}}< 0\\ \Leftrightarrow3+\sqrt{x}>0\Rightarrow x\ge0\left(thõa\:mãn\right)\)

vậy khi \(x\ge0\) thì B<1

9 tháng 8 2018

a/ \(A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right)\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+3}\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\dfrac{3-\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=-\dfrac{3}{\sqrt{x}+3}\cdot\left(-\dfrac{\sqrt{x}-2}{\sqrt{x+3}}\right)=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)^2}\)

b/ A < 1

<=> \(\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)^2}< 1\)

\(\Leftrightarrow3\left(\sqrt{x}-2\right)< \left(\sqrt{x}+3\right)^2\)

\(\Leftrightarrow3\sqrt{x}-6< x+6\sqrt{x}+9\)

\(\Leftrightarrow-x-3\sqrt{x}-15< 0\)

\(\Leftrightarrow x+3\sqrt{x}+15>0\) (luôn đúng)

=> A < 1 với mọi x >= 0

18 tháng 9 2021

a) \(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(=\dfrac{-3\sqrt{x}+3}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}-1}=\dfrac{-3}{\sqrt{x}+3}\)

b) \(D=-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{4}\)

\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 9\) 

\(\Leftrightarrow0\le x< 81\) và \(x\ne9\)

a) D=\(\left(\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\right)\) \(:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(\Leftrightarrow D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\) \(.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3-3\sqrt{x}}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3.\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)

\(\Leftrightarrow D=\dfrac{-3}{\sqrt{x}+3}\)

b) Để D\(< \dfrac{-1}{4}\) \(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{-1}{4}\) 

\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow9>\sqrt{x}\Leftrightarrow81>x\ge0\)

 

a: Khi x=16 thì B=4+1=5

b: \(A=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)

 

a: ĐKXĐ: x>0; x<>9

b: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{3\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{3\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+2}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+2}\)

a: ĐKXĐ: x>0; x<>9

b: \(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right):\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

c: Để D<-1 thì D+1<0

\(\Leftrightarrow-3\sqrt{x}+2\sqrt{x}+4< 0\)

\(\Leftrightarrow4-\sqrt{x}< 0\)

hay x>16